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Abstract

In this paper, we present some improvements, in terms of accuracy and speed-up, for a particular well adapted Discon-
tinuous Galerkin method devoted to the time-domain Maxwell equations. First, to reduce spurious modes on very dis-
torted meshes, the addition of dissipative terms as penalization in the numerical scheme is studied and compared on
examples. Second, in order to increase the efficiency of the method, a multi-class local time-stepping strategy is presented
and its validation and advantages are highlighted on different examples.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In order to limit dispersive and dissipative errors [1] generated by classical schemes used to solve the time-
domain Maxwell equations like FDTD [2,3] or FVTD [4–6], some other methods as Discontinuous Galerkin
(DG) methods [7], using high order spatial approximation of the fields in each cell, have been studied. Such
methods are generally used with unstructured meshes and naturally allow spatial refinements when necessary,
as for example near walls or in presence of materials with high dielectric contrasts. We have developed for the
Maxwell equations a DG method based on a leap-frog scheme in time and a non-dissipative fluxes formulation
[8]. However, the use of unstructured meshes can imply the presence of very distorted and small cells. Conse-
quently, to ensure accuracy and stability, an increase of the spatial order and small time steps are required in
the current available scheme. In this paper, after a first section in which we recall the principles and advantages
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of the particular DG method under consideration, we study in the second section the way to reduce spurious
modes, and then the way to increase accuracy by introducing a penalization of the fluxes by dissipative terms.
In particular, via a mathematical analysis, we show the convergence of the scheme even when using an order 1
spatial approximation, which is not the case without those dissipative terms [10]. Finally, in a third section, we
develop a multi-class local time-stepping strategy adapted to the leap-frog time scheme classically used for
Maxwell’s equations [2]. The efficiency of this approach is compared with various local time-stepping strate-
gies in terms of reduction of CPU time. Some validations on examples are given, in particular the possibility of
using this local time-stepping method on cavity problems is emphasized.

2. Principles and advantages of the Discontinuous Galerkin method considered

Let X be a bounded open subset of R3 whose boundary is oX, and let n denotes the unit outward normal to
X. Let eðxÞ, lðxÞ and rðxÞ denote, respectively, the permittivity, the permeability and the conductivity of the
medium.We consider the problem described by the Maxwell equations:

Find ðE;HÞ : X��0; T ½! R3 � R3 such that:
eotE þ rE ¼ r� H ;

lotH ¼ �r� E;

n� E ¼ 0 on oX:

8><>: ð1Þ
where E and H define the electric and magnetic fields. The boundary condition is not restrictive because it is
used both to treat closed problems as cavity and to bound the Perfectly Matched Layers (PML) domain [11].

Consider a set T of hexahedral elements ðKiÞi¼1...N being a partition of X. We introduce the following
approximate space:
Vr ¼ fv 2 ½L2ðXÞ�3; 8K 2 T ;DF �KvjK � F K 2 ½QrðbK Þ�3g; ð2Þ

where bK ¼ ½0; 1�3 is the unit cube, 8K 2 T , F K : bK ! K denotes the trilinear mapping which associates the ver-
tices of each element, QrðbK Þ is the space of polynomials of degree at most equal to r 2 N� in each variable onbK and DF K and J K are, respectively, the Jacobian matrix and its determinant associated with the map F K .
Moreover, to each K 2 T , we associate the outward unit normal nK .

Usually, for DG methods, E and H fields are approximated by polynomials on each cell. In our case, we
approximate by polynomials the fields DF �KE � F K and DF �KH � F K on bK . It is not a strange choice since the
Jacobian matrix is the essential ingredient to build a conform H-curl approximation [12]. As we shall see it
later, this will imply interesting properties for memory storage.

Finally, we consider the following semi-discrete DG method:find ðEhð�; tÞ;Hhð�; tÞÞ 2 Vr � Vr such that :
8K 2 T and 8 w; / 2 Vr
R

K eotEh � wdxþ
R

K rEh � wdx ¼
R

K r� H h � wdxþ
R

oK aK
oKsnK � ðEh � nKÞtK

oK

�
þbK

oKsHh � nKt
K
oK

�
� wds;R

K lotH h � /dx ¼ �
R

K r� Eh � /dxþ
R

oK cK
oKsEh � nKt

K
oK þ dK

oKsnK � ðH h � nKÞtK
oK

� �
� /ds;

8>><>>: ð3Þ
where aK
oK , bK

oK , cK
oK , dK

oK are parameters constant per face and svtK
C ¼ ðvjK 0 ÞC � ðvjKÞC the jump across the

boundary C ¼ K 0 \ K. When C is a boundary face (ie C ¼ K \ oX) then K 0 does not exist and we simply define
svtK

C ¼ �ðvjKÞC.
The coefficients aK

oK , bK
oK , cK

oK , dK
oK are chosen such that (1) and (3) are equivalent problems (in the continuous

sense) and to ensure a conservative formulation:

� 8 C ¼ K \ K 0, aK
C ¼ aK 0

C ¼ 0, dK
C ¼ dK 0

C ¼ 0, bK
C ¼ bK 0

C ¼ � 1
2
, cK

C ¼ cK 0
C ¼ 1

2
:

� 8 C ¼ K \ oX, bK
C ¼ 0 ¼ dK

C ¼ aK
C , cK

C ¼ 1:
For the time discretization, as for the FDTD method, we use a Leap-Frog numerical scheme where the elec-
tric fields are evaluated at the time nDt and the magnetic fields at the time ðnþ 1

2
ÞDt, with Dt the time step and n

the current iteration.
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In order to define a set B of basis functions of Vr, we first define a set bB of basis functions of bK . Let

x̂ijk ¼ ðx̂i; ŷj; ẑkÞ, 1 6 i; j; k 6 r þ 1 be a set of points of bK , where x̂i, ŷj and ẑk are Gauss quadrature points

on ½0; 1�. At the point x̂ijk, we define on bK three basis functions ûl
ijkðx̂; ŷ; ẑÞ ¼ Liðx̂ÞLjðŷÞLkðẑÞel where

Liðx̂Þ ¼
Qrþ1

m¼1;m6¼i
ðx̂�x̂mÞQrþ1

m¼1;m6¼i
ðx̂i�x̂mÞ

is the Lagrange interpolation polynomial and ðelÞl¼1;2;3 denotes the classical Cartesian

base. On K 2 T , the corresponding basis functions are defined by ul;K
ijk � F Kðx̂Þ ¼ ðDF �KÞ

�1ûl
ijkðx̂Þ where

x̂ ¼ ðx̂; ŷ; ẑÞ. Finally, the set of basis function of Vr is
B ¼ ful;K
ijk : K 2 T ; l ¼ 1; 2; 3 and i; j; k ¼ 1; � � � ; r þ 1g
and the dimension of Vr is 3ðr þ 1Þ3N (where N is the number of cells). So, each Uð�; tÞ 2 Vr can be written in
this way: 8K 2 T
U jKðx; tÞ ¼
X3

l¼1

Xrþ1

ijk¼1

UðtÞl;Kijk ul;K
ijk ðxÞ;
where UðtÞl;Kijk 2 R is the degree of freedom associated to the basis function ul;K
ijk :

In the sequel, we say the DG method is a Qr approximation when we choose a spatial approximation order
of r. Thanks to the chosen approximation space, we have: 8K 2 T , l; s ¼ 1; 2; 3 and i; j; k;m; n; p ¼ 1; . . . ; r þ 1
R

Kðr � ul;K
ijk Þ � us;K

mnp dx ¼ signðJ KÞ
RbK ðr̂ � ûl

ijkÞ � ûs
mnp dx̂R

oKðu
l;K
ijk � nKÞ � us;K

mnp ds ¼ signðJ KÞ
R

obK ðûl
ijk � n̂Þ � ûs

mnp dŝ;

8<: ð4Þ
where n̂ is the outward unit normal to bK .
By using Eq. (4) and a Gauss quadrature rule to evaluate integrals, we obtain:

– For Mass matrices, (ðMÞpl denotes the ðp; lÞ component of the matrix M):
Z
K

eU � ul;K
ijk dx ¼ xijk

X3

p¼1

U p;K
ijk jJ K jðDF �1

K ðe � F KÞDF ��1
K Þplðx̂ijkÞ:
– For Stiffness matrices, (ðMÞl denotes the component l of vector M):
Z
K
r� U � ul;K

ijk ¼ signðJ KÞ
Xrþ1

mnq¼1

X3

p¼1

xijkU l;K
ijk ðr̂ � ûm

ijkðx̂ijkÞÞl:
– For Jump matrices:
Z
oK

sH � nKtoK � u
l;K
ijk ds ¼ �signðJ K 0 Þ

Z
obK ðDF �1

K � SK 0KDF K 0 Þð bH K 0 � n̂Þ � ûl
ijk � SK 0K dŝ

þ signðJ KÞ
Z

obK ð bH K � n̂Þ � ûl
ijk dŝ:
In the above expressions xijk is the quadrature weight at point x̂ijk and SK 0K ¼ F �1
K � F K 0 . DF �1

K � SK 0KDF K 0 is
a permutation matrix constant per face (see [8] for more detail).

The DG formulation (3) finally leads to:
M eotE þMrE ¼ RH � SiH ;

MlotH ¼ �RE þ SiE þ SbE;

(
ð5Þ
where M e, Ml and Mr are 3� 3 block-diagonal matrices, R the stiffness matrix, Si and Sb are jump matrices.
Thanks to the choice of approximation space and basis functions, only the mass matrix has to be stored be-
cause of its dependence on the cells K. Stiffness and jump matrices just require to store the sign of the Jaco-
bians J K and some computations made on the reference element bK .
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The important advantage of this DG method is to give, regardless of the space approximation order, a very
low memory storage and a small cost of computation to evaluate the matrices of the numerical scheme. This
allows us to use meshes with a small number of cells and a high order spatial approximation to obtain very
accurate solutions. Consequently, the memory and CPU costs are lower than for methods based on an order 2
spatial approximation using more refined meshes. In fact, high order spatial approximation and unstructured
meshes reduce the dispersive and dissipative errors of the scheme, and improve the accuracy near the struc-
tures compared to staircase methods such as FDTD. Therefore the proposed method is well-adapted to elec-
tromagnetic compatibility (EMC) problems for which it is essential to know the fields near the structures, but
also to cavity problems where the dispersive and dissipative errors cannot be neglected.

To illustrate these advantages, we consider the propagation of a mode inside a perfectly metallic cavity
with an edge length equal to 1 m. We study the propagative mode (3, 0,0), whose analytical solution is given
by:
Table
Memo

Metho

CPU t
Memo
Ex ¼ Ey ¼ H z ¼ 0

Ez ¼ sinð3pðx� x0ÞÞ sinð3pðy � y0ÞÞ cosðxtÞ
Hx ¼ 3p

xl0
sinð3pðx� x0ÞÞ cosð3pðy � y0ÞÞ sinðxtÞ

Hy ¼ 3p
xl0

cosð3pðx� x0ÞÞ sinð3pðy � y0ÞÞ sinðxtÞ

8>>>><>>>>:

with x ¼ c03p

ffiffiffi
2
p

and ðx0; y0; z0Þ the center of the cavity. In Fig. 1 and Table 1, we can compare results ob-
tained with the FDTD and DG methods. The improvement is expressed in terms of storage and CPU time.
In this example, with a high spatial approximation (Q6) with the DG method, only 3� 3� 3 Cartesian cells
have been required to mesh the cavity.

Other examples have been treated in [8] and show the advantages of this DG method for EM scattering
problems.
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Fig. 1. Comparison of FDTD/DG results at the center of the cavity.
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3. Penalization of the centered fluxes by dissipative terms

For complex problems as usually encountered in industry, the meshes are built by using specific tools
which, generally, do not generate automatic regular meshes. In particular, important differences between
the sizes of the biggest and the smallest cells can be observed, as well as very distorted cells. In such cases,
two problems appear:

– The use of a centered fluxes formulation can sometimes generate numerical spurious modes which degrade
the accuracy of the solution.

– If strong cell-size disparities are encountered, it becomes necessary to use a small global time step which
results in an important loss of efficiency of the scheme. In such cases, the advantages (accuracy and mem-
ory) of the DG method have a prohibitive cost: the computational time.

The second point will be treated in the next section by introducing local time-stepping strategies. For the
first point, several studies [20,21] have been done to analyze the importance of the dispersive errors and spu-
rious modes in DG schemes. The solution proposed here to reduce or eliminate spurious mode consists in add-
ing some dissipative terms in the numerical scheme. Indeed, in the formalism (3) equivalent to the Maxwell
equations, jump terms have been added on E � n and H � n, and dissipative jump terms on n� ðE � nÞ
and n� ðH � nÞ. In the previous scheme we neglected the dissipative terms. A numerical study highlights their
importance in the method when the meshes are very distorted [9]. In particular their ability to reduce consid-
erably the spurious modes have to be mentioned. Then, we introduce these dissipative terms through penal-
ization terms with two positive coefficients kPE, kPH without modifying the time approximation. The new
formulation of the problem on each element K becomes:
R

K eotEh � wdxþ
R

K rEh � wdx

¼
R

K r� H h � wdxþ
R

oK bK
oKðsHh � nKt

K
oK þ signðbK

oKÞkPEsnK � ðEh � nKÞtK
oKÞ

� �
� wds;R

K lotHh � /dx ¼ �
R

K r� Eh � /dxþ
R

oK cK
oKðsEh � nKt

K
oK þ signðcK

oKÞkPHsnK � ðH h � nKÞtK
oKÞ

� �
� /ds:

8><>:

In this expression, the dissipative terms of the forms

R
oK ½nK � ðv� nKÞ� � /ds can be evaluated as follows:
Z

oK
snK � ðv� nKÞt � Uds ¼

Z
oK

nK � ðvK 0 � nKÞ � /ds�
Z

oK
nK � ðvK � nKÞ � /ds; ð6Þ
where vK and vK 0 are the fields taken respectively to the cells K and K 0, adjacent at the face oK. We obtain for
the term with vK :
Z

oK
nK � ðvK � nKÞ � /ds ¼

Z
oK
ðvK � nKÞ � ð/� nKÞds

¼
Z

obK DF K

J KkDF ��1
K n̂Kk

ðv̂K � n̂KÞ �
DF K

J KkDF ��1
K n̂Kk

ð/̂� n̂KÞjJ K jkDF ��1
K n̂Kkdŝ

¼
Z

obK 1

jJ K jkDF ��1
K n̂Kk

DF �KDF Kðv̂� n̂KÞ � ð/̂� n̂KÞdŝ
and for the term with vK 0 :
Z
oK

nK � ðvK0 � nKÞ � /ds ¼
Z

oK
ðvK0 � nKÞ � ð/� nKÞ ds

¼
Z

obK ðvK 0 � F Kðx̂Þ � nKÞ �
DF K

J KkDF ��1
K n̂k

ð/̂� n̂ÞjJ K jkDF ��1
K n̂kdŝ:
The maps F K 0 and F K give F K 0 ðoK̂ 0Þ ¼ oK ¼ F KðobK Þ. Consider the change of variable from obK to oK̂ 0, by using
SK 0K ¼ F �1

K � F K 0 on the previous integral, we obtain:
�
Z

obK 0 DF K 0

J K 0 DF ��1
K 0 � n̂K 0

�� �� ðv̂K 0 � n̂K 0 Þ �
DF K � SK 0K

ðJ KkDF ��1
K n̂KkÞ � SK 0K

ð/̂� n̂KÞ � SK 0KðjJ K jkDF ��1
K n̂KkÞ � SK 0K dŝ0;
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where nK 0 ¼ �nK . By using:
J K 0 kDF ��1
K 0 � n̂K 0 k ¼ ðJ KkDF ��1

K � n̂KkÞ � SK 0K ;
we finally obtain:
�
Z

obK 0 DF �K 0 ðDF K � SK 0KÞ
jJ K 0 jkDF ��1

K 0 � n̂K 0 k
ðv̂K 0 � n̂K 0 Þ � ð/̂� n̂KÞ � SK 0K dŝ0:
On the new expression of the jump integrals, we need to evaluate and store a 3� 3 matrix DF �KDF K at each
unknown of each surface of the cell K. Although this modification induces an increase of memory storage, the
method remains advantageous because the others integrals in the formulation are not modified and need low
memory storage.

3.1. L2-Stability of the spatial dissipative scheme

In [8] a stability result has been given for our spatial non-dissipative DG method. When dissipative terms
are added, it is important to obtain a stable numerical method. In this subsection, we propose a condition to
ensure the stability of our spatial dissipative DG method.

Recall the dissipative DG method:
R
K eK

Enþ1
h �En

h
Dt �wdx¼

R
Kr�H

nþ1
2

h �wdxþ
R

oK bsH
nþ1

2
h �nKt

K
oKþ k

ZoK
snK �ðEn

h�nKÞtK
oK

� �
�wds;

R
K lK

H
nþ1

2
h �H

n�1
2

h
Dt �/dx¼�

R
Kr�En

h �/dxþ
R

oK csEn
h�nKt

K
oKþ k

Y oK
snK � H

n�1
2

h �nK

� �
t

K
oK

� �
�/ds;

8><>: ð7Þ
where ZC ¼ 1
2

ffiffiffiffi
lK
eK

q
þ

ffiffiffiffiffi
lK0
eK0

q� 	
and Y C ¼ 1

2

ffiffiffiffi
eK
lK

q
þ

ffiffiffiffiffi
eK0
lK0

q� 	
with C ¼ K \ K0 and considering kPE ¼ k

ZoK
, kPH ¼ k

Y oK
.

To generalize the L2 stability property, we take also a permittivity ek and a permeability lK constant by cell.
Taking up the L2-stability analysis carried out in [8], we easily obtain:

Proposition 1.
Enþ1
h � En

h ¼ �kDt
X
C2F i

Z
C

1

ZC
sEn

h � nCt � sEn
h � nCtþ 1

ZC
sEn

h � nCt � sEnþ1
h � nCt

�
þ 1

Y C
sH

nþ1
2

h � nCt � sH
nþ1

2
h � nCtþ 1

Y C
sH

n�1
2

h � nCt � sH
nþ1

2
h � nCt

	
;

where En
h ¼

P
K2T h
ð
R

K eKEn
h;K � En

h;K dxþ
R

K lKH
nþ1

2
h;K � H

n�1
2

h;K dxÞ and F i is the set of internal faces of the mesh T i.e.

if C 2 F i then 9K;K 0 2 T h such that C ¼ K \ K 0.

Proof. This proof is classical and does not raise any difficulty. That is why, we only give its sketch.
In order to derive this result, we take the test functions
w ¼ Enþ1
h þ En

h and / ¼ H
nþ1

2
h

Next, we test the first equation of (7) at time n and the second at times n and n + 1. Finally, by adding these
three equations for all cells of the mesh T , we obtain the result.

In the case where the scheme is not dissipative (i.e. k ¼ 0) we obviously find the well-known discrete energy
conservation i.e. Enþ1

h ¼ En
h. h

The estimate ab 6 ða2 þ b2Þ=2 leads to:
Enþ1
h � En

h 6
kDt
2

X
C2F i

� 1

ZC
ksEn

h � nCtk2
0;C þ

1

ZC
ksEnþ1

h � nCtk2
0;C

�
� 1

Y C
ksH

nþ1
2

h � nCtk2
0;C þ

1

Y C
ksH

n�1
2

h � nCtk2
0;C

	
; ð8Þ
where k � k0;X is the L2 norm on X.
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So, one can define a better adapted discrete energy:
eE n
h ¼ En

h �
kDt
2
ksEn

h � nCtk2
0;F i;Z � ksH

n�1
2

h � nCtk2
0;F i;Y
with k � k2
0;F i;X ¼

P
C2F i

1
X C
k � k2

0;C. The estimate (8) becomes:
eE nþ1
h � eE n

h 6 0:
To prove the L2-stability of the scheme, one must find a CFL condition for which eE n
h is a positive definite qua-

dratic form [8].
Noting that
eE n
h P En

h �
kDt
2
ksEn

h � nCtk2
0;F i ;Z
and that
ksEn
h � nCtk2

0;F i;Z ¼
X

C¼K\K 02F i

2ffiffiffiffi
lK
eK

q
þ

ffiffiffiffiffi
lK0
eK0

q ksEn
h � nCtk2

0;C

6

X
C¼K\K 02F i

4ffiffiffiffi
lK
eK

q
þ

ffiffiffiffiffi
lK0
eK0

q ðkEn
h;K � nCk2

0;C þ kEn
h;K 0 � nCk2

0;CÞ

6 4
X

C¼K\K02F i

cK

1þ
ffiffiffiffiffiffiffiffi
eK lK0
eK0lK

q kEn
h;K � nCk2

0;C þ
cK 0

1þ
ffiffiffiffiffiffiffiffi
eK0lK
eK lK0

q kEn
h;K 0 � nCk2

0;C

0B@
1CA

6 4
X
K2T h

cKkeEn
h;K � nKk2

0;oKi ðoKi ¼ the set of faces of K belonging to F iÞ

6 4kmax ðbD�1
2bB bD�1

2Þ
X
K2T h

cKkbEKk2

0;bK see ½8�;
where kmaxðAÞ corresponds to the greatest eigenvalue of the matrix A, cK ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
eKlK
p

, eEn
h;K ¼ En

h;K

ffiffiffiffiffi
eK
p

andbD; bB are the 3ðr þ 1Þ3 � 3ðr þ 1Þ3 matrices defined by: 8l; l0 2 f1; 2; 3g and 8I ¼ ði; j; kÞ; I 0 ¼ ði0; j0; k0Þ 2
f1; . . . ; r þ 1g3
bDððl; IÞ; ðl0; I 0ÞÞ ¼ dll0dII 0xijkbBððl; IÞ; ðl0; I 0ÞÞ ¼ Z
obK ðûl

ijk � n̂Þ � ðûl0

i0j0k0 � n̂Þdŝ;
it is easy to see that the stability condition in [8] becomes:
Dt
KK

<
2

cK

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðbD�1

2R̂bD�1
2Þ

q
þ 1

2
max

16i6nbfiK

ffiffiffiffiffiffiffiffiffi
lK

lV ði;KÞ

q
;
ffiffiffiffiffiffiffiffiffi

eK
eV ði;KÞ

q� 	
þ 4k

� 	
kmaxðbD�1

2bB bD�1
2Þ
;

where KK ¼ min16i;j;k6rþ1
jJK ðx̂ijkÞj

kmaxððDF �K DF K Þðx̂ijkÞÞ

� �
(in the case of a uniform Cartesian grid whose the spatial step is h,

KK ¼ h).
So, the dissipative DG method using a leap-frog approximation in time is L2-stable. As we have noted in

practice, we can see that this condition is slightly more restrictive than the one obtained with the non-dissipa-
tive scheme. This is due to the backward discretization for the time approximation of penalization terms.

3.2. A priori error estimate

The advantage of the proposed spatial dissipative scheme is significant with strongly distorted meshes. Par-
ticularly, by a mathematical analysis we can demonstrate a gain in the order of convergence of the scheme
which implies the convergence for all spatial orders of approximation.
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In [10], a complete error analysis of the non-dissipative scheme has been carried out. In particular, we
have pointed out that the choice of the approximation (hexahedrals, centered flux and the presence of the
Jacobian matrix in Vr) can imply a loss of spatial convergence and the Q1 scheme can even become no-con-
vergent. By adding the penalization terms, a similar study can be made on the convergence of the dissipative
scheme.

Let ðE;HÞ and ðEh;HhÞ be, respectively, the exact solution of the Maxwell equations and the approximate
DG solution belonging to V r. Then, to evaluate a convergence of the DG method, we evaluate an overestima-
tion of kðE � Eh;H � H hÞk� by a term depending of the spatial step size and the order of the DG scheme. The
kð�; �Þk� is the energy norm defined by kðE;HÞk2

� ¼
R

XðeE � E þ lH � HÞdx ¼ kEk2
0;�;X þ kHk

2
0;l;X, where

kEk2
0;�;X ¼

R
XðeE � EÞdx and kHk2

0;l;X ¼
R

XðlH � HÞdx.
Consider ðu;wÞ 2 V r � V r, we write E � Eh ¼ E � vþ v� Eh ¼ DP

E � DI
E and H � Hh ¼ H � wþ w� Hh ¼

DP
H � DI

H with DP
E ¼ E � v, DI

E ¼ Eh � v, DP
H ¼ H � w and DI

H ¼ H h � w.We have the two following
propositions:

Proposition 2. Let ðv;wÞ 2 Vr � Vr be the solution of the problem: 8ðv0;w0Þ 2 Vr � Vr and 8K 2 T ,
Z
K

ev � v0 dxþ
Z

K
r� w � v0 dx�

Z
oK
ðbtw� nt

K
oK þ ksn� ðv� nÞtK

oKÞ � v0 ds ¼ l1ðv0Þ;Z
K

lw � w0 dx�
Z

K
r� v � w0 dx�

Z
oK
ðcsv� nt

K
oK þ ksn� ðw� nÞtK

oKÞ � w0 ds ¼ l2ðw0Þ;
ð9Þ
where l1; l2 are the two linear forms on Vr defined by:
l1ðv0Þ ¼
Z

K
eE � v0 dxþ

Z
K
r� H � v0 dx;

l2ðw0Þ ¼
Z

K
lH � w0 dx�

Z
K
r� E � w0 dx:
Then, we have:
d

dt
kðDI

E;D
I
H Þk� 6 kD

P
oE
ot
k0;e;X þ kD

P
oH
ot
k0;l;X þ kD

P
Ek0;e;X þ kD

P
Hk0;l;X: ð10Þ
Proposition 3. If we assume that the exact solution verifies ðE;HÞ 2 H sþ1ðT Þ for s P 0, then there exists a con-

stant C > 0 such that
kðDP
E;D

P
H Þk� 6 Chminðs�1

2;r�
1
2ÞmaxðkEksþ1;h; kHksþ1;hÞ;
where H sðT Þ ¼ fv 2 ½L2ðXÞ�3 : 8K 2 T ; vjK 2 ½H sðKÞ�3g and kvk2
s;h ¼

P
K2T kvk

2
s;K .

The technical proofs of these two propositions are given at the Appendix A.
By using Propositions 2 and 3 and the Gronwall lemma on the time interval ð0; T Þ; we have:

Theorem 1. Let r be a positive integer. Assume that the exact solution verifies ðE;HÞ 2 Hsþ1ðT Þ and
ðoE

ot ;
oH
ot Þ 2 H s0þ1ðT Þ for s; s0 P 0 real and 0 < hK 6 1. Then, we have the global estimate of the interpolation

error:
kðDI
E;D

I
H Þk�ðT Þ 6 kðD

I
E;D

I
H Þk�ð0Þ þ CThminðs�1

2;s
0�1

2;r�
1
2ÞAðT ;E;HÞ; ð11Þ
where
AðT ;E;HÞ ¼ max
t2ð0;T Þ

kEksþ1;hðtÞ; kHksþ1;hðtÞ;
oE
ot

���� ����
s0þ1;h

ðtÞ; oH
ot

���� ����
s0þ1;h

ðtÞ
 !

:
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Finally, by using (11) and (3), we deduce the error of the DG-scheme by:
Table
Error

Metho

h

h1 ¼ h
h2 ¼ h
kðE � Eh;H � H hÞk2
� 6 2ðkðDP

E;D
P
HÞk

2
� þ kðD

I
E;D

I
H Þk

2
�Þ:
In conclusion, if the exact solution is smooth enough, the convergence rate for the penalized scheme is r � 1
2

versus r � 1 for the non-dissipative scheme. So, the dissipative terms ensure the L2-convergence for the Q1

approximation.

3.3. Some numerical results

In [10], we have proved that the value r � 1 for the spatial convergence rate (in L2 norm) of non-dissipative
scheme seems to be optimal for the general unstructured meshes. The previous error analysis shows that this
bound becomes r � 1=2 when one adds dissipative terms. These two results are sufficient to affirm that the dis-
sipative scheme is better convergent than the non-dissipative one. In this part, we just illustrate this result by
some numerical results.

To underline the convergence results for the Q1 approximation, we give two examples comparing the dis-
sipative and the non-dissipative approaches. The first example is the previous cavity problem treated in Sec-
tion 2. For several non-regular unstructured meshes of the cavity with an assimilate decreasing spatial step size
h, we compare in Table 2 the errors in norm L2 between the analytic solution and the solutions obtained with
the dissipative and the non-dissipative Q1 spatial approximation.

We can see in this table a better convergence of the scheme by considering dissipative terms than without
these terms. Moreover, the spatial rate of convergence tends to the theoretical one i.e. 0ðh0Þ and 0ðh0:5Þ when h

tends to zero. Fig. 2 shows also comparison on accuracy between the solutions obtained with the two schemes
for a same mesh configuration and for an integration time equivalent to 10 wavelengths. We note in this figure,
on the first curves, the advantage of the dissipative approach. This advantage is clearly due, as pointed out in
the second curves of the figure, to the dispersive error induced by the non-dissipative scheme. Indeed, we can
show by a mathematical study in one dimension that the dissipative scheme is less dispersive than the non-dis-
sipative scheme (order 4 instead of order 2 [13,8]).

This cavity example shows the advantages to take into account the dissipative terms in our formalism when
the mesh is non-regular, but for this kind of problem, a Q1 approximation is not the best choice and an
approximation of higher order will be more appropriate in order to decrease dissipative and dispersive errors.
In particular, this is indicated to observe on long time integration.

However, for scattering problems, the Q1 approximation can sometimes be sufficient to obtain accurate
solution and taking into account the dissipative terms improves the efficiency of the method. The second
example proposed in this section gives an application related to this kind of problems. The problem consists
in evaluating at a given test-point the electromagnetic fields scattered by a perfectly metallic sphere (cen-
ter = (0, 0,0) and radius = 0.5 m) illuminated with an incident plane wave given by Eyðt; x; y; zÞ ¼

377 exp � tþz�1
3:e8�1e�8

5e�9

� �2
� 	

. In Fig. 3, we compare the results obtained by using or not the dissipative terms

in the scheme. We can see different solutions obtained with the non-dissipative Q1 and Q2 approximations,
the dissipative Q1 approximation and the FDTD method, being assumed here as the reference solution.
The FDTD solution has been obtained for a mesh where the cell size is less than the smallest wavelength
of the source spectrum divided by 80. This solution is quasi-similar for meshes with smaller cell sizes. We
2
between numerical and analytical solutions for different spatial steps

d Without dissipative terms With dissipative terms

L2 error Order L2 error Order

0.01478 � 0.0108 �
=2 0.0122 0.27 0.0073 0.565
1=1:5 0.0115 0.13 0.0057 0.55
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can notice that the solution obtained with the non-dissipative Q1 approximation has a strange behavior.
The use of a Q2 approximation in the non-dissipative scheme improves the solution. However, this solu-
tion remains less accurate than the solution obtained with the dissipative Q1 approximation. Indeed, little
oscillations appears in the Q2-approximation solution due certainly to spurious modes. In fact, for scattering
problems, the advantage of using dissipative terms in our DG scheme on non-regular meshes is double:
We obtain more accurate solutions with low spatial order approximation and we require less computational
time.

4. Local time-stepping strategy based upon a leap-frog time scheme

The DG scheme we presented is based on an explicit leap-frog time discretization, which is a well-know
scheme in the electromagnetism community [2,15]. Nevertheless, when dealing with unstructured meshes, there
can be strong cell size disparities and, to ensure stability, the global time step is constrained by the smallest cell
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of the mesh; this implies an important increase of computational time. To avoid this problem, a solution could
be to take an implicit scheme for time discretization, but this solution implies to solve a big linear system at
each time step. In this approach, direct solvers cannot be used because they need to store a too big matrix. In
other way, the possibility to obtain fast and convergent iterative method to solve this kind of problem, stays,
at our knowledge, a difficult and not solved challenge. Consequently, we choose another solution which con-
sists to introduce a local time-stepping strategy in our explicit scheme. Indeed, the time step imposed by the
smallest cell is not necessary for all cells to ensure the stability of the scheme in the computational domain. In
the literature, for Maxwell’s equations, we can find local time-stepping methods which ensure or not a condi-
tion of stability. In particular, a method based on a FDTD scheme has been proposed in [14] to ensure an
energy conservation. But, for 3D-Maxwell’s equations, this method leads to a numerical scheme too expensive
in terms of memory and computational time. Consequently, local time-stepping strategies based upon inter-
polations and fully explicit schemes, where a stability condition is difficult to be proved, remain the most
attractive. In this paper, we focus our investigations on a method of this last family to improve our DG
method.

4.1. 2-class and multi-class methods

Starting from our DG scheme with leap-frog time discretization, we proposed in [8] a 2-classes method
using interpolations. In this approach, the computational domain is split into two parts: the first one com-
posed of cells evaluated with a time step adapted to the smallest cells of the mesh, and the second one on which
cells are evaluated with a larger time step. The largest time step is taken as a multiple of the smallest one in
order to ensure coincidence at each step of the process, and interpolations are used to approximate unknown
fields. This method gives good results and the computational time is considerably reduced with meshes com-
posed of small and big cells. However, in general, the range of cells size have a continuous progression from
smallest to biggest ones and, in the case of strongly refined unstructured meshes, it is widely required to use
more than two classes of cells to reduce the CPU time cost of simulations. Unfortunately, using interpolations
with more than two classes is too expensive in term of computational time and multi-class strategies must be
investigated.

In this kind of multi-class methods, a non-dissipative DG approach, proposed by Piperno [15], was pre-
sented as symplectic [16], and therefore was supposed to conserve an energy quantity. It is based on the Verlet
scheme, which is a reorganization of the classical leap-frog scheme into three steps. Let En and Hn be the
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electric and magnetic fields at the time step n, the values of the fields Enþ1 and Hnþ1 at the time nþ 1 by using
the Verlet scheme are given by:
Hnþ1
2 ¼ Hn � Dt

2
M�1

l SEn;

Enþ1 ¼ En þ DtM�1
e SHnþ1

2;

Hnþ1 ¼ H nþ1
2 � Dt

2
M�1

l SEnþ1;

8>><>>: ð12Þ
where Dt, M e, Ml and S are, respectively, the time step, the mass matrices for electric and magnetic equation
and the matrix related to the curl operator.

In his multi-class approach, Piperno bulks the cells into N sets or classes 1; 2; . . . ;N � 1;N which are asso-
ciated to the respective time-steps Dt

2N�1 ;
Dt

2N�2 ; . . . ; Dt
2
;Dt. Then, the smallest cells are in class 1 and the largest cells

in class N. In the process, for an evaluation of the fields at a step Dt, the number of field evaluations inside each
class is different. In Fig. 4 the steps are labeled in the order in which they are executed in the process.

In the Fig. 4, we can notice also that the multi-class approach can be defined at each time step Dt by a recur-
sive process labeled RN ðDtÞ and given by:
Evaluate RN�1 Dt
2

� �
;

Evaluate the cells into class N by using Eq: ð12Þ;
Evaluate RN�1 Dt

2

� �
8><>: ð13Þ
with the convention that R0 performs no operation.
Note that this time domain scheme consists in a recursive call of the Verlet scheme on different classes (for

N ¼ 1, we retrieve the original Verlet scheme). However, even if the Verlet scheme is symplectic, we can not a
priori affirm that this recursive scheme is symplectic too. Indeed, calling the Verlet scheme on different classes
requires values of the fields at some unknown times. To palliate this difficulty, the last known fields available
are used. Consequently, the scheme which is recursively called in (13) is not exactly the Verlet one, and the
symplectic and stability properties of this multi-classes method are still an open question, even if an energy
conservation is proved in [15] for N ¼ 2. In particular, for long time simulations, it can be necessary to reduce
the time steps in order to avoid instabilities. Nevertheless, this recursive scheme remains attractive and it can
be easily adapted to a dissipative scheme with the same advantages as for non-dissipative scheme. Indeed,
dt/4

H(n+1) E(n+1) H(n+1) E(n+1)

Class 2Class 1

E(n)H(n)E(n)H(n)

dt/2

dt/4

dt/4

dt/4

dt/2 dt/2

dt/2

dt

Fig. 4. Operations in a time step of the Piperno scheme with two classes.
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regardless of the number of classes N, this scheme is easy to implement, fully explicit, it does not need any
additional storage and gives good results: the numerical solution is comparable to standard ones and the com-
putation time is significantly reduced.

From the same idea, we present here a leap-frog based recursive method, better adapted to our scheme and
more efficient in terms of computational time.

4.2. Recursive leap-frog method

To make comparison with the Piperno method, we describe the recursive leap-frog method in the case of a spa-
tial non-dissipative formulation. To take into account a spatial dissipative formulation, we only need to add new
jump terms which are split like the non-dissipative jump terms. This does not induce any particular difficulty and
the analysis done in this section on comparison between the different methods remains the same. Indeed, for dis-
sipative or non-dissipative formulation, the number of classes defined depends on the shape of the cell and of the
variation of the time step in the set of cells. This last quantity is approximately the same for the two formulations.

For practical reasons, we rewrite our Discontinuous Galerkin formulations defined by Eq. (5) under the
equivalent form [15]:
M eotE þMrE ¼ AH H � Si�H ¼ SH ;

MlotH ¼ �AEE þ Si�E ¼ �ST E;

(
ð14Þ
by splitting in (5), the jump terms Si and ðSiÞT in a cell into two parts:

– part inside the cell itself: Siþ and ðSiþÞT ,
– part outside the cell Si� and ðSi�ÞT .

Then we obtain AE ¼ Rþ Siþ and AH ¼ R� ðSiþÞT � Sb. For the following, we consider Mr ¼ 0 to simplify
the expressions but there is no difficulty to take into account this term on the recursive leap-frog method. As
for the previous scheme, the cells of the mesh are grouped into N integration classes i, associated to the time
step ð2mþ 1ÞN�iDtmin, where m is a strictly positive integer and Dtmin the time step corresponding to the small-
est cell of the mesh. In the sequel, we consider the case m ¼ 1, which means that there is a factor 3 between the
time steps of consecutive classes.

We recall hereafter the expression of the leap-frog scheme with a time-step Dt at the step n is given by:
Ml
Hnþ1=2�Hn�1=2

Dt ¼ �ST En;

M e
Enþ1�En�1

Dt ¼ SHnþ1=2:

(
ð15Þ
For N ¼ 2, by considering (14), we propose the following multi-class leap-frog method at cells located at the
interface between class 1 and 2 can be written:
Ml
2

H
nþ1

2
2
�H

n�1
2

2

Dt ¼ �A2En
2 þ ST

21En
1;

Ml
1

H
nþ1

6
1
�H

n�1
6

1

Dt=3
¼ �A1En

1 þ ST
12En

2;

M e
1

E
nþ2

6
1
�En

1

Dt=3
¼ A1H

nþ1
6

1 � S12H
nþ1

2
�

2 ;

Ml
1

H
nþ1

2
1
�H

nþ1
6

1

Dt=3
¼ �A1E

nþ2
6

1 þ ST
12En�

2 ;

M e
2

Enþ1
2
�En

2

Dt ¼ A2H
nþ1

2
2 � S21H

nþ1
2

1 ;

M e
1

E
nþ4

6
1
�E

nþ2
6

1

Dt=3
¼ A1H

nþ1
2

1 � S12H
nþ1

2
2 ;

Ml
1

H
nþ5

6
1
�H

n�1
2

1

Dt=3
¼ �A1E

nþ4
6

1 þ ST
12Enþ1�

2 ;

M e
1

Enþ1
1
�E

nþ4
6

1

Dt=3
¼ A1H

nþ5
6

1 � S12H
nþ1

2
�

2 ;

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

ð16Þ
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where in the matrices, the subscripts 1, 2, 21 and 12 are identified, respectively, to cells in class 1, 2 and terms in
jumps coming from cells located in class 1 (respectively, 2) into cells located in class 2 (respectively, 1). For
cells which are not located at the interface between cells 1 and 2, there is no problem and the classical
leap-frog is applied (with the time-step of the class). Note that, as in (13), we replace fields at unknown times
by the last known values, denoted * in (16). In Fig. 5 we give the operations proceed in a step of the multi-class
Leap-frog method for N ¼ 3.

More generally, if we label LeapFrogHðn;DtÞ (respectively, LeapFrogEðn;DtÞ) the first (respectively, the sec-
ond) equation of (15) applied to the cells belonging at the class N with a time-step Dt, we can define the multi-
class leap-frog method as a recursive process. A step of integration of the recursive leap-frog method is defined
by:
1: ComputeHðN ;DtÞ;
2: ComputeEðN ;DtÞ;



ð17Þ
where the recursive functions ComputeHðN ;DtÞ and ComputeEðN ;DtÞ are respectively defined by:
ComputeHðN ;DtÞ :

� LeapFrogH N ;Dtð Þ
� ComputeH N � 1; Dt

3

� �
� ComputeE N � 1; Dt

3

� �
� ComputeH N � 1; Dt

3

� �
8>>><>>>:

ComputeEðN ;DtÞ :

� LeapFrogE N ;Dtð Þ
� ComputeE N � 1; Dt

3

� �
� ComputeH N � 1; Dt

3

� �
� ComputeE N � 1; Dt

3

� �
8>>><>>>:
with ComputeHð1; dtÞ defined by LeapFrogHð1; dtÞ and ComputeEð1; dtÞ defined by LeapFrogEð1; dtÞ, where dt
denotes the time-step.

Since the leap-frog is composed of only two steps (three for the Verlet scheme), this method requires 33%
less computation than the Verlet-based recursive scheme, with the same advantages: the scheme is fully expli-
cit, easy to write, does not require additional storage and gives good results with a CPU time significantly
reduced. However, we have also the same problems for the stability study as in the Verlet-based method:
the CFL must sometimes be strengthened for long-time simulations to ensure stability. From our numerical
experience, generally a multiply factor of 0.8 on the time step obtained for non local time-stepping scheme is
sufficient to ensure the stability of the local time-stepping scheme.

Various numerical validation results are given in Section 4.3. This local time-stepping method, shows its
interests on real problems and gives good comparison results with the two others local time-stepping strategies
describe in this paper. The results obtained in this paper are given with a dissipative approach, but similar
conclusion would be given for a non-dissipative approach.
1
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Fig. 5. Steps of recursive leap-frog scheme with three classes.
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4.3. Numerical results

In this section, we present some numerical results obtained with the previous local time-stepping methods
applied on three different meshes given in Fig. 6. These unstructured meshes, which are typical of problems
encountered in industry, contain a large number of cells and present strong cell-size disparities. In these sim-
ulations, the aircraft, the space shuttle and the generic missile are all illuminated by a plane wave.

The proposed leap-frog multi-class local time-stepping method (R-LF) has been compared with the 2-class
method (2-CL) presented in [8] and the method (R-V) proposed by Piperno. We give in Tables 3–5 the repar-
tition of cells by classes respectively obtained with the three methods. We can notice, for all the methods, the
low percentage of small cells, but also important cells-size disparities. For example, there is at least a factor 210

between small and largest cells of the missile mesh (because the R-V scheme uses 10 classes of cells). This
explains the real efficiency of multi-class recursive methods on such meshes.

For the three meshes under consideration, Table 6 shows the computational time gain obtained between the
standard leap-frog scheme (without local time-stepping) and the three local time-stepping methods discussed
in this paper. We first note that the R-LF method is always faster than the other methods. We can also remark
that the gain obtained with the 2-CL method is limited whereas, with multi-class methods, the stronger the cell
size disparities, the greater the gain in terms of computational time. For example, considering the missile mesh
(which presents the most refined unstructured mesh), the improvement obtained with recursive methods is very
significant: the R-LF method leads to a scheme 15 times faster than without local time-stepping. In such cases,
the requirement of multi-class strategies is clearly highlighted.

On the previous example, the efficiency in terms of CPU-time reduction is clearly shown. In the next exam-
ple, we propose to study the convergence behaviour of the local time-stepping scheme on a simple case. We
take into account the cavity configuration treated in Section 2 and we observe the fields located at the center of
this cavity by using different meshes where the local time-stepping strategy is activated or not. To obtain the
meshes, we take a regular Cartesian mesh of the cavity with a given spatial step and we refine locally the cells
around the center of the cavity. By using this process, we can easily obtain different meshes with different num-
ber of classes in the local time-stepping scheme. The first simulations consist to study the behaviour of the
scheme when we decrease the time step for fixed spatial meshes. Three meshes have been made to do these
simulations. The first mesh is a regular mesh with a spatial size cell equal to 0:2 m and the 2 others have a
largest spatial size cell equal to 0:2 m and a smallest size cell respectively equal to 0:1 m and 0:05 m. In the
local time-stepping scheme we obtain respectively for the two last meshes a 2-class method and a 3-class
method. The errors between the computed and the exact solution are given in Table 7. We note on this table
that the convergence behaviour for the scheme with and without local time-stepping is the same. We note also
that the errors for the scheme with local time-stepping strategy are smaller than the scheme without local time-
stepping strategy. As it has been proved that the scheme without local time-stepping strategy converges, then,
the scheme with local time-stepping must converge also.

The second simulations consists to studied the behaviour of the scheme when we increase the number of
class in the local time-stepping strategy. From a regular mesh, we divide several times the size of the cells
located near the center of the cavity to obtain several meshes which contain until seven class into the local
time-stepping scheme. Table 8 shows the different results obtained. We can see in this table that the error
do not decrease with the size of the smallest cell. This is not absurd because the error is generally related
to the size of the largest cell and this remark is coherent to the results observed in the table. Then, using several
classes in local time-stepping seems to do not deteriorate the accuracy of solution. In fact, the error for scheme
with local time-stepping strategy is smaller than the scheme without the local time-stepping strategy, then the
convergence seems to be ensure also in this case.

We have also compared the DG method using or not the local time-stepping strategy with the FDTD
method. Fig. 7 presents on the aircraft example an evaluated scattered component of the field taken at a point
outside the aircraft by using the three methods We can see on this figure, the good agreement between the
different solutions. In particular, the accuracy of the solution is not altered by using the local time-stepping
strategy.

The advantages of using a local time-stepping method are clearly shown for scattering problems, but there
remains some difficulties for cavity problems. Indeed, in such cases, long computation time are necessary and
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for display requirements).
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we cannot give a stability criteria for the proposed local time-stepping method yet. However, experimental
results show that a suitable reduction of the smallest time step (CFL condition) increases the possible obser-
vation time and offers the possibility to use the method to treat these kinds of problems in a sufficient time of



Table 3
Cell repartition by classes for the aircraft mesh (	180,000 cells)

Scheme Class

1 2 3 4 5 6 7

2-CL 1000 179,000 � � � � �
R-LF 1000 16,600 110,400 42,200 8900 � �
R-V 300 2300 10,800 56,200 67,700 34,000 8700

Table 4
Cell repartition by classes for the shuttle mesh (	105,000 cells)

Scheme Class

1 2 3 4 5 6

2-CL 200 105,200 � � � �
R-LF 100 6600 91,000 7700 � �
R-V 70 500 4000 38,100 57,300 5500

Table 5
Cell repartition by classes for the missile mesh (	91,000 cells)

Sc Cl

1 2 3 4 5 6 7 8 9 10

2-CL 12 91,000 � � � � � � � �
R-LF 10 200 1400 14,300 71,600 3500 � � � �
R-V 8 16 160 550 1500 5800 46,000 33,500 3300 200

Table 6
CPU-time gain obtained with different local time-stepping methods versus the leap-frog scheme (without local time-stepping)

Scheme Mesh

Plane Shuttle Missile

2-CL 2.5 3.6 2.7
R-V 4.5 4.0 11.0
R-LF 5.5 6.0 15.0

Table 7
Comparison of errors between computed and exact solutions for the DG scheme using or not the local time-stepping strategy

Factor Regular mesh 2-class mesh 3-class mesh

1 8.06e�3 7.06e�3 6.67e�3
0.5 3.59e�3 2.47e�3 2.20e�3
0.33 2.21e�3 1.41e�3 1.23e�3
0.25 1.52e�3 1.07e�3 8.66e�4
0.2 1.23e�3 8.76e�4 6.66e�4
0.167 1.04e�3 6.66e�4 5.46e�4
0.125 7.83e�4 5.05e�4 4.09e�4
0.0625 4.79e�4 2.80e�4 2.3e�4

The column factor define the value multiplied by the time step. For the regular mesh, we do not use local time-stepping and for the 2-class
and 3-class a local time-stepping strategy is employed. For the factor = 1, the time step are dt ¼ 5:75e� 11s for the regular mesh and the
largest/smallest time steps for the 2-class and 3-class configuration are, respectively, 4:34e� 11s/1:44e� 11s and 3:25e� 11s/3:61e� 12s.
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observation. For example, considering the cavity problem treated in Section 2, if we strengthen the CFL by a
factor 0:8, we obtain a stable solution for a duration time larger than the simulation time generally needed for
electromagnetic industrial problems (see Fig. 8). Moreover, despite the reduction of the CFL condition in the



Table 8
Comparison of errors between computed and exact solutions for different number of class in the local time-stepping strategy

Number of class dtmax dtmin L2 error dlmax (m) dlmin (m)

1 5.75e�11s 5.75e�11s 8.06e�3 0.2 0.2
2 4.34e�11s 1.44e�11s 7.06e�3 0.2 0.1
3 3.25e�11s 3.61e�12s 6.67e�3 0.2 0.05
4 2.44e�11s 9.02e�13s 4.56e�3 0.2 0.025
6 3.29e�11s 1.35e�13s 6.90e�3 0.2 0.0125
7 2.48e�11s 3.38e�14s 4.82e�3 0.2 0.00625

Columns dtmin and dtmax define the smallest and the largest time step and columns dlmin, dlmax define the smallest and the largest spatial
cell size.
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Fig. 7. Comparison of the accuracy of the solution by using or not the local time-stepping method with a Q2 dissipative spatial approach.
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local time-stepping approach, its use in this kind of problems, remains more advantageous in terms of com-
putational time than the FDTD method. Indeed, the dispersive errors due to the FDTD scheme destroys the
accuracy of the solution and we need to have very small space step to obtain a correct solution. This constraint
implies a small time step and then an important computational time.

Finally, Fig. 9 presents a comparison between the DG method by using the recursive leap-frog local time-
stepping strategy, and different FDTD solutions obtained by taking into account different spatial sizes of cells.
The quantity under consideration is a scattered field inside the missile illuminated by a plane wave given by
ky ¼ 1 and ExðtÞ ¼ 377 � e�ððt�2:e�10Þ=1:e�10Þ2 . We can see the advantage to use the DG approach for accuracy
and memory storage (reduction by 2 compared to FDTD). However, in terms of CPU-time, despite the use
of a local time-stepping strategy for DG, the FDTD remains, in this example, more efficient (two times faster).
This is not generally the case but in this example, this is mainly due to the very small size of a few cells in the
unstructured mesh. In the future, we can improve this drawback by using in the DG method different spatial
approximation orders for each cell. In a such case, the smallest cells will have a low spatial order and an asso-
ciated time-step larger than the actual local time-stepping strategy. Then the CPU-time for simulations will be
reduced.
5. Conclusion

In [8], a non-dissipative Discontinuous Galerkin method using a leap-frog time scheme has been developed
to solve time domain Maxwell’s equations. This scheme offers real advantages in terms of accuracy and mem-
ory storage compared to classical methods like FDTD for problems such as cavity or hight frequency scatter-
ing problems. However, on industrial unstructured meshes in which very distorted and/or small cells appear,
the DG method can suffer of important spurious modes and a too small time step. This generates a loss in the
accuracy of the solution and a CPU-time considerably increased.

In this paper, we proposed and studied the introduction of dissipative penalization terms and an original
local time-stepping strategy. It has been proved mathematically and confirmed by means of examples that the
dissipative terms provides a new formulation which improves the quality of the solution for distorted meshes
and ensures the convergence of our DG scheme for all spatial approximation orders. In particular, we have
also the convergence of the order 1 approximation, whereas it was not the case without these penalization
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terms. To accelerate the DG method, we propose also a local time-stepping strategy defined by a recursive
multi-class method based upon a leap-frog scheme. Some comparisons with other approaches have been done
and show the advantages of the proposed method. The statement of an explicit stability condition for this local
time-stepping strategy is still an open problem, but numerical examples validated this method and shown that
it can be applied without too many restrictions, even for cavity problems. In the future, the local time-stepping
methods stay an important stake for Maxwell’s equations. In particular other approaches [19] than the meth-
ods proposed in this paper could be interesting to investigate.

Other improvements in terms of CPU-time and memory storage of the DG method proposed here will be
studied in further works. In particular, considering different spatial approximation orders for each cells and
using local time-stepping strategy will imply an additional reduction in CPU-time and memory storage.

Appendix A. Before giving the proofs of Propositions 2 and 3, we assume some background relative to the
hexahedral mesh considered here [10]:

– We assume that all hexahedron K are convex and, to characterize an element K 2 T , we define the diameter
hK of K and a regularity parameter rK ¼ hK

qk
where qK ¼ kJ F�1

K
k

1
3
1;K with J F�1

K
the determinant of the Jacobian

matrix F �1
K .

– We will use the estimates:
kF Kk
1;1;bK 6 ChK and kJ Kk1;bK 6 Ch3

K ;

kF �1
K k1;1;K 6 C

h2
K

q3
K

and kJ F�1
K
k1;K ¼ q�3

K ;

kððDF KDF �KÞðx̂ÞÞ 6 Ch2
K and kððDF �1

K DF ��1
K Þðx̂ÞÞ 6 C

h4
K

q6
K

;

ðA:1Þ
where kðAÞ belongs to the spectrum of A and C > 0 is independent of K.
– Finally, we consider a regular family ðT hÞh>0 of triangulation of X such that when h tends toward 0, it exists

a number rc > 0, independent of h, verifying 8K 2 T rK 6 rc:

For the Maxwell equations, we assume also that 9e0; l0 > 0 such that 8x 2 X, we have eðxÞP e0 and
lðxÞP l0. In our analysis, the electric conductivity is r ¼ 0.

Proof of Proposition 2. 8wh 2 Vr, the exact solution of the Maxwell equations verifies in particular:
Z
K

e
oE
ot
� wh dx�

Z
K
r� H � wh dx ¼ 0 ðA:2Þ
and the approximate solution ðEh;H hÞ:
Z
K

e
o

ot
Eh � wh dx�

Z
K
r� Hh � wh dx ¼

Z
oK
ðbsHh � nt

K
oK þ k�½n� ðEh � nÞ�KoKÞ � wh ds: ðA:3Þ
By combining these Eqs. (A.2) and (A.3) and by introducing elements vh;wh 2 Vr as E � Eh ¼ E � vh þ vh � Eh

and H � Hh ¼ H � wh þ wh � Hh, we obtain:
Z
K

e
o

ot
ðE � vhÞ � wh dxþ

Z
K

e
o

ot
ðvh � EhÞ � wh dx�

Z
K
r� ðH � whÞ � wh dx�

Z
K
r� ðwh � H hÞ � wh dx

¼
Z

oK
ðbsðH h � whÞ � nt

K
oK þ k½n� ððEh � vhÞ � nÞ�KoKÞ � wh ds

þ
Z

oK
ðbsðwh � HÞ � nt

K
oK þ k½n� ððvh � EÞ � nÞ�KoKÞ � wh ds: ðA:4Þ
To obtain the last line of the last expression, we used the fact that 8t, ðE;HÞð:; tÞ 2 H 0ðcurl;XÞ � Hðcurl;XÞ
([17]) (i.e. 8C ¼ K \ K 0, one has sH � nt

KorK 0

C ¼ sE � nt
KorK 0

C ¼ 0) and that 8C ¼ K \ oX, b ¼ 0 and E � n ¼ 0.
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In a same way, one has:
Z
K

l
o

ot
ðH � whÞ � /h dxþ

Z
K

l
o

ot
ðwh � H hÞ � /h dxþ

Z
K
r� ðE � vhÞ � /h dxþ

Z
K
r� ðvh � EhÞ � /h dx

¼
Z

oK
ðcsðEh � vhÞ � nt

K
oK þ ksn� ððH h � whÞ � nÞ�KoKÞ � /h dsþ

Z
oK
ðcsðvh � EÞ � nt

K
oK

þ ksn� ððwh � HÞ � nÞ�KoKÞ � /h ds: ðA:5Þ

If one denotes DP

E ¼ E � vh, DI
E ¼ Eh � vh, DP

H ¼ H � wh, DI
H ¼ Hh � wh and if one takes wh ¼ DI

E and /h ¼ DI
H ,

one obtains:
1

2

d

dt

X
K2T

Z
K
ðeDI

E � D
I
E þ lDI

H � D
I
H Þdx

6

X
K2T

Z
K
ðe o

ot
DP

E � D
I
E þ l

o

ot
DP

H � D
I
H þr� DP

E � D
I
H �r� DP

H � D
I
EÞdx

� 	
þ
X
K2T

Z
oK
ðbsDP

H � nt
K
oK þ ksn� ðDP

E � nÞ�KoKÞ � D
I
Eds

þ
X
K2T

Z
oK
ðcsDP

E � nt
K
oK þ ksn� ðDP

H � nÞ�KoKÞ � D
I
H ds: ðA:6Þ
In the evaluation of the last expression, the choice of b and c in the DG formalism implies:
X
K2T

Z
K
ðr � DI

H � D
I
E �r� DI

E � D
I
H Þdx�

Z
oK

bsDI
H � nt

K
oK � D

I
Eds�

Z
oK

csDI
E � nt

K
oK � D

I
H ds

� 	
¼ 0 ðA:7Þ
and the choice of k > 0 implies:
X
K2T

�
Z

oK
ksn� ðDI

E � nÞ�KoK � D
I
E ds�

Z
oK

ksn� ðDI
H � nÞ�KoK � D

I
H ds

� 	
6 0: ðA:8Þ
We now consider ðv;wÞ 2 Vr � Vr such that 8ðv0;w0Þ 2 Vr � Vr and 8K 2 T ,
Z
K

ev � v0 dxþ
Z

K
r� w � v0 dx�

Z
oK
ðbsw� nt

K
oK þ ksn� ðv� nÞ�KoKÞ � v0 ds ¼ l1ðv0ÞZ

K
lw � w0 dx�

Z
K
r� v � w0 dx�

Z
oK
ðcsv� nt

K
oK þ ksn� ðw� nÞ�KoKÞ � w0 ds ¼ l2ðw0Þ;

ðA:9Þ
where l1; l2 are the two linear forms on Vr defined by: l1ðv0Þ ¼
R

K eE � v0 dxþ
R

K r� H � v0 dx and
l2ðw0Þ ¼

R
K lH � w0 dx�

R
K r� E � w0 dx:

Now, if we choose vh ¼ v and wh ¼ w solutions of (A.9), and by taking v0 ¼ DI
E and w0 ¼ DI

H , we have:
X
K2T

Z
K
ðeDP

E � D
I
E þ lDP

H � D
I
HÞdx ¼

X
K2T

Z
K
ðr � DP

E � D
I
H �r� DP

H � D
I
EÞdx

þ
X
K2T

Z
oK
ðbsDP

H � nt
K
oK þ ksn� ðDP

E � nÞ�KoKÞ � D
I
Eds

þ
X
K2T

Z
oK
ðcsDP

E � nt
K
oK þ ksn� ðDP

H � nÞ�KoKÞ � D
I
H ds ðA:10Þ
and (A.6) becomes:
1

2

d

dt

X
K2T

Z
K
ðeDI

E � D
I
E þ lDI

H � D
I
H Þdx 6

X
K2T

Z
K
ðe o

ot
DP

E � D
I
E þ l

o

ot
DP

H � D
I
H Þdx

þ
X
K2T

Z
K
ðeDP

E � D
I
E þ lDP

H � D
I
H Þdx: ðA:11Þ
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Then, by using Cauchy-Schwartz inequality and the inequalities
kDI

Ek0;e;X

kðDI
E ;D

I
H Þk�
6 1 and

kDI
H k0;l;X

kðDI
E ;D

I
H Þk�
6 1, (A.11) leads

to:
d

dt
kðDI

E;D
I
H Þk� 6 kD

P
oE
ot
k0;e;X þ kD

P
oH
ot
k0;l;X þ kD

P
Ek0;e;X þ kD

P
Hk0;l;X; ðA:12Þ
which concludes the proof. h

Proof of Proposition 3. For this study, we follow the demonstration of [18] but in the non-affine case. In the
following, we assume also that C, eC , C1. . . define generic positive constants which are independent of
h ¼ maxK2T ðhKÞ.

Let a : V2
r � V2

r ! R be the bilinear form defined by:
aððu; vÞ; ðu0; v0ÞÞ ¼
X
K2T

Z
K

eu � u0 dxþ
Z

K
r� v � u0 dx�

Z
oK
ðbsv� nt

K
oK þ ksn� ðu� nÞ�KoKÞ � u0 ds

�
þ
Z

K
lv � v0 dx�

Z
K
r� u � v0 dx�

Z
oK
ðcsu� nt

K
oK þ ksn� ðv� nÞ�KoKÞ � v0 ds

	
: ðA:13Þ
To prove the Proposition 3, we need essentially to show the continuity and a inf-sup property of the bilinear
form a. First, we are going to give a inf-sup property by proving the following result. h

Theorem 2. There exists C > 0 (independent of h) such that
inf
ðu;vÞ2Vr�Vr

sup
ðu0 ;v0Þ2Vr�Vr

aððu; vÞ; ðu0; v0ÞÞ
kðu; vÞkhkðu0; v0Þkh

P C > 0; ðA:14Þ
where
kðu; vÞk2
h ¼ kuk

2
0;e;X þ kvk

2
0;l;X þ ksu� ntk2

0;Fh
þ ksv� ntk2

0;Fh
þ
X
K2T

hKðkr � uk2
0;K þ kr � vk2

0;KÞ
and where F h denotes the set of faces of T and
ksu� ntk2
0;F h
¼

X
C¼K\K 0

Z
C
kuK 0 � nK � uK � nKk2dsþ

X
C¼K\oX

Z
C
kuK � nKk2ds:
To prove this result, we begin to demonstrate three propositions on the overestimations of the different
terms of the bilinear form a. We choose test-functions u0 and v0 such that u0 � F K ¼ DF ��1

K r̂ � v̂ ¼ DF ��1
K û0

and v0 � F K ¼ �DF ��1
K r̂ � û ¼ DF ��1

K v̂0. The first proposition gives a overestimation of the terms of order 1
in the bilinear form a:

Proposition 4. It exists C > 0 (independent of h) such that:
ku0k0;X 6 Ckvk0;X and kv0k0;X 6 Ckuk0;X: ðA:15Þ
Proof of Proposition 4.
ku0k0;K ¼
Z
bK jJ K ju0 � F K � u0 � F Kdx̂ ¼

Z
bK jJ K jDF ��1

K r̂ � v̂ � DF ��1
K r̂ � v̂dx̂ 6 ChK

Z
bK r̂ � v̂ � r̂ � v̂dx̂

6 C0hK

Z
bK v̂ � v̂dx̂ since v̂ 2 ½QrðbK Þ�3 6 C0hK

Z
bK jJ K j
jJ K j
ðDF �KDF ��1

K Þv̂ � ðDF �KDF ��1
K Þv̂dx̂ 6 C00kvk0;K :
We have used (A.1) to obtain these estimates. The second estimate of the proposition is obtained by the same
process. The second proposition concerns the underestimation of curl-terms in the bilinear form a: h
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Proposition 5. It exists C > 0 (independent of h) such that:
� ðrh � u; v0Þ0;X ¼ �
X
K2T

Z
K
r� u � v0 dx P C

X
K2T

hKkr � uk2
0;K

ðrh � v; u0Þ0;X ¼
X
K2T

Z
K
r� v � u0 dx P C

X
K2T

hKkr � vk2
0;K :
Proof of Proposition 5.
�ðrh � u; v0Þ0;X ¼ �
X
K2T h

ðr � u; v0Þ0;K ¼ �
X
K2T

Z
bK r̂ � ûK � v̂0K dx̂ ¼

X
K2T

Z
bK r̂ � ûK � r̂ � ûKdx̂

¼
X
K2T

Z
bK jJ K j
jJ K j

J KDF ��1
K

DF �K
J K

� 	
r̂ � ûK � J KDF ��1

K

DF �K
J K

� 	
r̂ � ûKdx̂

P C
X
K2T

hKkr � uk2
0;K :
We have used (A.1) to obtain these estimates. The second estimate of the proposition is obtained by the same
process. The third proposition concerns the jump terms of the bilinear form a: h

Proposition 6. It exists C > 0 (independent of h) such for all d1; d2; d3; d4 2 R�, we have:
X
K2T

Z
oK

bsv� nt
K
oK � u0 ds 6 C d2

1ksv� ntk2
0;F i

h
þ 1

d2
1

X
K2T

hKkr � vk2
0;K

 !
X
K2T

Z
oK

ksn� ðu� nÞ�KoK � u0 ds 6 C d2
2ksu� ntk2

0;F h
þ 1

d2
2

X
K2T h

hKkr � vk2
0;K

 !
X
K2T

Z
oK

ksn� ðv� nÞ�KoK � v0 6 C d2
3ksv� ntk2

0;Fh
þ 1

d2
3

X
K2T h

hKkr � uk2
0;K

 !
X
K2T

Z
oK

csu� nt
K
oK � v0 ds 6 C d2

4ksu� ntk2
0;Fh
þ 1

d2
4

X
K2T

hKkr � uk2
0;K

 !
:

Proof of Proposition 6. We only prove the first inequality. One obtains the others by using the same technique.
Using the Cauchy-Schwarz inequality, we can write:
X
K2T

Z
oK

bsv� nt
K
oK � u0 ds 6

X
K2T
kbsv� nt

K
oKk0;oKku0k0;oK ðA:16Þ
Let d1 6¼ 0. By using ðd1a� b
d1
Þ2 ¼ d2

1a2 þ b2

d2
1

� 2ab P 0 (a; b 2 R), (A.16) leads to: !
X
K2T

Z
oK

bsv� nt
K
oK � u0 ds 6

X
K2T

d2
1

2
kbsv� nt

K
oKk

2
0;oK þ

1

2d2
1

ku0k2
0;oK : ðA:17Þ
We have also [10] 8u 2 Vr and K 2 T , it exists C > 0 (independent of K) such that kujKk0;oK 6
C
hK
kuk0;K . So,

(A.17) becomes:
X
K2T

Z
oK

bsv� nt
K
oK � u0 ds 6

X
K2T

d2
1

2
kbsv� nt

K
oKk

2
0;oK þ

C

2d2
1hK

ku0k2
0;K

 !
: ðA:18Þ
Finally, the definition of u0 gives ku0k2
0;K 6 Ch2

Kkr � vk0;K (for a certain constant C > 0) and then, by using
(A.18), we complete the proof. h
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By using the Proposition 5, we have:
aððu; vÞ; ðu0; v0ÞÞ �
X
K2T

Z
K
ðeu � u0 þ lv � v0Þdxþ

Z
oK
ðbsv� nt

K
oK þ ksn� ðu� nÞ�KoKÞ � u0 ds

�
þ
Z

oK
ðcsu� nt

K
oK þ ksn� ðv� nÞ�KoKÞ � v0 ds

	
¼
X
K2T

Z
K
ð�r � u � v0 þ r � v � u0Þdx P C

X
K2T

hKðkr � vk2
0;K þ kr � uk2

0;KÞ:
By using the Proposition 4, it exists a constant C > 0 such that
Z
K
ðeu � u0 þ lv � v0Þdx 6 Cðkuk2

0;e;X þ kvk
2
0;l;XÞ: ðA:19Þ
By using the Proposition 6, we find a constant C > 0 such that for all d1; d2; d3; d3 6¼ 0, we have:
X
K2T

Z
oK
ðbsv� nt

K
oK þ ksn� ðu� nÞ�KoK

� 	
� u0 dsþ

Z
oK
ðcsu� nt

K
oK þ ksn� ðv� nÞ�KoKÞ � v0 dsÞ

6 Cðd2
1 þ d2

3Þksv� n�k2
0;Fh
þ Cðd2

2 þ d2
4Þksu� n�k2

0;Fh
þ C

1

d2
1

þ 1

d2
2

 !X
K2T

hKkr � vk2
0;K

þ C
1

d2
3

þ 1

d2
4

 !X
K2T

hKkr � uk2
0;K : ðA:20Þ
Finally, by taking into account (A.19) and (A.20), one can always choose d1; d2; d3; d4 such that: 9C; eC > 0
C
X
K2T

hKðkr � vk2
0;K þ kr � uk2

0;KÞ 6 aððu; vÞ; ðu0; v0ÞÞ þ eCðkuk2
0;e;X þ kvk

2
0;l;X þ ksu� ntk2

0;Fh

þ ksv� ntk2
0;Fh
Þ ¼ aððu; vÞ; ðu0; v0ÞÞ þ eCaððu; vÞ; ðu; vÞÞ: ðA:21Þ
By adding the term Cðkuk2
0;e;X þ kvk

2
0;l;X þ ksu� ntk2

0;Fh
þ ksv� ntk2

0;Fh
Þ to the previous inequality, we obtain:
Ckðu; vÞk2
h 6 aððu; vÞ; ðu0 þ C1u; v0 þ C1vÞÞ; ðA:22Þ
where C1 ¼ C þ eC .
Now, we are going to prove that kðu0; v0Þkh 6 Ckðu; vÞkh. By using Proposition 4, we obtain:ku0k0;e;X 6

Ckvk0;l;X and kv0k0;l;X 6 Ckuk0;e;X.By using (A.1), we have:
kr � u0k2
0;K 6

C
hK
kr̂ � û0k2

0;bK 6 C0

hK
kû0k2

0;bK becauseu0 2 ½QrðbK Þ�3 6 C0

hK
kr̂ � v̂k2

0;bK 6 C00kr � vk2
0;K
and
kr � v0k2
0;K 6 Ckr � uk2

0;K :
Moreover, we can prove:
ksu0 � ntk2
0;Fh
6 C

X
K2T

hKkr � vk0;K
and
ksv0 � ntk2
0;Fh
6 C

X
K2T

hKkr � uk0;K :
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Indeed, it is easy to see that
ksu0 � ntk2
0;Fh
6

X
K2T

Z
oK
ku0K � nKk2ds 6

X
K2T

Z
oK
ku0Kk

2ds ðA:23Þ
Now, by using (A.1), it exists a constant C such that:
X
K2T

Z
oK
ku0Kk

2ds 6 C
X
K2T

hK

Z
K
r� v � r � vdx
which gives the expected result. Finally, if we take ðw1;w2Þ ¼ ðu0 þ C1u; v0 þ C1vÞ 2 Vr � Vr, (A.22) leads to
Ckðu; vÞkhkðw1;w2Þkh 6 aððu; vÞ; ðw1;w2ÞÞ; 8ðu; vÞ 2 Vr � Vr
for a certain constant C > 0 independent of h. So, we obtain the inf-sup condition (A.14). The next step of the
demonstration of the Proposition 3 is to verify the continuity of the bilinear form a. To obtain this result, you
have the following lemma:

Lemma 1. It exists M > 0 (independent of h) such that
aððu; vÞ; ðu0; v0ÞÞ 6 Mkðu; vÞkh;12
kðu0; v0Þkh; 8u; v; u0; v0 2 Vr
where kðu; vÞk2
h;12
¼ kðu; vÞk2

h þ
P

K2T ðh
�1
K ðkuk

2
0;K þ kvk

2
0;KÞ þ kuk

2
0;oK þ kvk

2
0;oKÞ:

To verify this lemma, it is sufficient to integrate by parts aððu; vÞ; ðu0; v0ÞÞ (For more detail see [18]).
Recall that we solve the problem: find ðu; vÞ 2 Vr � Vr such that 8ðu0; v0Þ 2 Vr � Vr, aððu; vÞ; ðu0; v0ÞÞ ¼

ðl1ðu0Þ; l2ðv0ÞÞ. So, we have immediately the consistency result: aððu� E; v� HÞ; ðu0; v0ÞÞ ¼ 0 for all ðu0; v0Þ in
Vr � Vr. Now the inf-sup condition and the continuity of the bilinear form lead to the well-known estimate:
kðu� E; v� HÞkh 6 C inf
ðu0;v0Þ2Vr�Vr

kðE � u0;H � v0Þkh;12
for a certain constant C > 0. In [10], we have derived for a particular projector ph the following interpolations
error: let v 2 ½Hsþ1ðKÞ�3 with s P 0 a real. There exists a constant C > 0 independent of h such that
kv� phjKvk0;K 6 Chminðs;rÞ
K kvksþ1;K

jv� phjKvj1;K 6 Chminðs�1;r�1Þ
K kvksþ1;K

kðv� phjKvÞ � nKk0;oK 6 Ch
minðs�1

2;r�
1
2Þ

K kvksþ1;K :
So, If we assume that the exact solution verifies ðE;HÞ 2 H sþ1ðT Þ for s P 0, then there exists a constant C > 0
such that:
ku� E; v� Hk� 6 kðu� E; v� HÞkh 6 Chminðs�1
2;r�

1
2ÞmaxðkEksþ1;h; kHksþ1;hÞ
where HsðT Þ ¼ fv 2 ½L2ðXÞ�3 : 8K 2 T ; vjK 2 ½H sðKÞ�3g and kvk2
s;h ¼

P
K2T kvk

2
s;K and the Proposition 3 is

verified.
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